Fluorescence resonance energy transfer-sensitized emission of yellow cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to aluminum and other trivalent cations.
نویسندگان
چکیده
Fluorescence resonance energy transfer-sensitized emission of the yellow cameleon 3.60 was used to study the dynamics of cytoplasmic calcium ([Ca(2+)](cyt)) in different zones of living Arabidopsis (Arabidopsis thaliana) roots. Transient elevations of [Ca(2+)](cyt) were observed in response to glutamic acid (Glu), ATP, and aluminum (Al(3+)). Each chemical induced a [Ca(2+)](cyt) signature that differed among the three treatments in regard to the onset, duration, and shape of the response. Glu and ATP triggered patterns of [Ca(2+)](cyt) increases that were similar among the different root zones, whereas Al(3+) evoked [Ca(2+)](cyt) transients that had monophasic and biphasic shapes, most notably in the root transition zone. The Al(3+)-induced [Ca(2+)](cyt) increases generally started in the maturation zone and propagated toward the cap, while the earliest [Ca(2+)](cyt) response after Glu or ATP treatment occurred in an area that encompassed the meristem and elongation zone. The biphasic [Ca(2+)](cyt) signature resulting from Al(3+) treatment originated mostly from cortical cells located at 300 to 500 mu m from the root tip, which could be triggered in part through ligand-gated Glu receptors. Lanthanum and gadolinium, cations commonly used as Ca(2+) channel blockers, elicited [Ca(2+)](cyt) responses similar to those induced by Al(3+). The trivalent ion-induced [Ca(2+)](cyt) signatures in roots of an Al(3+)-resistant and an Al(3+)-sensitive mutant were similar to those of wild-type plants, indicating that the early [Ca(2+)](cyt) changes we report here may not be tightly linked to Al(3+) toxicity but rather to a general response to trivalent cations.
منابع مشابه
Interactions of Auxinic Compounds on Ca2+ Signaling and Root Growth in Arabidopsis thaliana
Auxinic-like compounds have been widely used as weed control agents. Over the years, the modes of action of auxinic herbicides have been elucidated, but most studies thus far have focused on their effects on later stages of plant growth. Here, we show that some select auxins and auxiniclike herbicides trigger a rapid elevation in root cytosolic calcium levels within seconds of application. Arab...
متن کاملImaging changes in cytoplasmic calcium using the Yellow Cameleon 3.6 biosensor and confocal microscopy.
Changes in the concentration of cytoplasmic calcium, [Ca(2+)]cyt are central regulators in many cellular signal transduction pathways including many lipid-mediated regulatory networks. Given this central role that [Ca(2+)] has during plant growth, monitoring spatial and temporal [Ca(2+)] dynamics can reveal a critical component of cellular physiology. Here, we describe the measurement of [Ca(2+...
متن کاملDual Color Sensors for Simultaneous Analysis of Calcium Signal Dynamics in the Nuclear and Cytoplasmic Compartments of Plant Cells
Spatiotemporal changes in cellular calcium (Ca2+) concentrations are essential for signal transduction in a wide range of plant cellular processes. In legumes, nuclear and perinuclear-localized Ca2+ oscillations have emerged as key signatures preceding downstream symbiotic signaling responses. Förster resonance energy transfer (FRET) yellow-based Ca2+ cameleon probes have been successfully expl...
متن کاملImaging of the Yellow Cameleon 3.6 Indicator Reveals That Elevations in Cytosolic Ca Follow Oscillating Increases in Growth in Root Hairs of Arabidopsis1[W][OA]
In tip-growing cells, the tip-high Ca gradient is thought to regulate the activity of components of the growth machinery, including the cytoskeleton, Ca21-dependent regulatory proteins, and the secretory apparatus. In pollen tubes, both the Ca gradient and cell elongation show oscillatory behavior, reinforcing the link between the two. We report that in growing root hairs of Arabidopsis (Arabid...
متن کاملExtracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis.
Extracellular ATP induces a rise in the level of cytosolic free calcium ([Ca(2+)](cyt)) in plant cells. To expand our knowledge about the function of extracellular nucleotides in plants, the effects of several nucleotide analogs and pharmacological agents on [Ca(2+)](cyt) changes were studied using transgenic Arabidopsis (Arabidopsis thaliana) expressing aequorin or the fluorescence resonance e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 152 3 شماره
صفحات -
تاریخ انتشار 2010